

Roll No.

--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. (Full Time) - END SEMESTER EXAMINATIONS, April/May 2025

GEO-INFORMATICS

II Semester

PH23C02 & Principles and Applications of Electromagnetic Radiation in Remote Sensing
(Regulation 2023)

Time: 3hrs

Max. Marks: 100

CO1	Comprehend the basic properties of electromagnetic radiation.
CO2	Understand the phenomena involved during the EMR interaction with the earth's atmosphere and surface.
CO3	Grasp the physics principles behind remote sensing.
CO4	Identify the external parameters and concepts needed for error-free navigation.
CO5	Appreciate various physics concepts involved in obtaining precise images.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2 = 20Marks)
(Answer all Questions)

Q.No	Questions	Marks	CO	BL
1	Mention some sources of EMR.	2	CO1	L2
2	Define Kirchhoff's law.	2	CO1	L1
3	Explain light polarization.	2	CO2	L2
4	Explain the principle behind Raman scattering	2	CO2	L2
5	What are active and passive sensing?	2	CO3	L1
6	Differentiate between GPR and seismic detection.	2	CO3	L2
7	Define gravitational field and provide its mathematical form?	2	CO4	L1
8	Define Earth's escape velocity and write its formula?	2	CO4	L1
9	What is the photoelectric effect?	2	CO5	L1
10	What are amplifiers?	2	CO5	L1

PART- B(5x 13 = 65 Marks)
(Restrict to a maximum of 2 subdivisions)

Q.No	Questions	Marks	CO	BL
11 (a)	Briefly explain HH polarization, radiant intensity, and spectral radiance. A laser emits sinusoidal electro-magnetic wave that travels in vacuum in the negative direction. The wavelength is $10 \mu\text{m}$ and E fields is parallel to y-axis, with $E_{\text{max}} = 1.2 \text{ M v/m}$. Then vector equations for E and B as a function of time and position are?	5+8	CO1	L1,L5
OR				
11 (b)	State and represent the Stefan-Boltzmann Law, Wein's displacement law, and the Inverse Square Law. Calculate the spectral radiance emitted by a land surface at 300 K at a wavelength of $20 \mu\text{m}$ using Planck's law.	5+8	CO1	L1,L5
12 (a)	Draw and explain the interaction of EMR interaction with the atmosphere, focusing on Absorption, Scattering, and Reflection.	13	CO2	L3
OR				

12 (b)	How can we use spectral reflectance to map and identify different types of ground cover: vegetation, soil, and water?	13	CO2	<u>L3</u>
13 (a)	Discuss seismic reflection: from principles to mathematical representation.	13	CO3	<u>L3</u>

OR

13 (b)	Draw and explain the working principle of RADAR and LIDAR.	13	CO3	L3
14 (a) (i)	Derive Earth's 'g' as a function of height.	5	CO4	L5
(ii)	Let's consider an International Space Station designed to operate at an altitude of 1000 km. When completed, it will have a weight (measured at the Earth's surface) of 4.22×10^6 N. What is 'g' at this height? Also, calculate its weight when in orbit?	8		

OR

14 (b) (i)	State and derive Kepler's second law.	5	CO4	<u>L5</u>
(ii)	Assume a satellite with a mass = 470 Kg is orbiting in a geosynchronous orbit. Calculate its distance from earth? Mass of earth is 5.98×10^{24} kg. Orbital period is equal to Earth's rotational period.	8		
15 (a)	Explain the basic principles, operational mechanism, and processing involved in CCDs.	13	CO5	L3

OR

15 (b)	Describe the working principles of radio signal devices in detail.	13	CO5	L3
--------	--	----	-----	----

PART- C(1x 15 = 15 Marks)
(Q.No.16 is compulsory)

Q.No	Questions	Marks	CO	BL
16. (i)	Explain the structure and composition of Earth's atmosphere.	10	CO2	<u>L2</u>
(ii)	Discuss how the dielectric constant and refractive index are useful in remote sensing.	5	CO2	<u>L3</u>

